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Abstract

In malaria-naı̈ve individuals, Plasmodium falciparum infection results in high levels of parasite-infected red blood cells
(iRBCs) that trigger systemic inflammation and fever. Conversely, individuals in endemic areas who are repeatedly infected
are often asymptomatic and have low levels of iRBCs, even young children. We hypothesized that febrile malaria alters the
immune system such that P. falciparum re-exposure results in reduced production of pro-inflammatory cytokines/
chemokines and enhanced anti-parasite effector responses compared to responses induced before malaria. To test this
hypothesis we used a systems biology approach to analyze PBMCs sampled from healthy children before the six-month
malaria season and the same children seven days after treatment of their first febrile malaria episode of the ensuing season.
PBMCs were stimulated with iRBC in vitro and various immune parameters were measured. Before the malaria season,
children’s immune cells responded to iRBCs by producing pro-inflammatory mediators such as IL-1b, IL-6 and IL-8. Following
malaria there was a marked shift in the response to iRBCs with the same children’s immune cells producing lower levels of
pro-inflammatory cytokines and higher levels of anti-inflammatory cytokines (IL-10, TGF-b). In addition, molecules involved
in phagocytosis and activation of adaptive immunity were upregulated after malaria as compared to before. This shift was
accompanied by an increase in P. falciparum-specific CD4+Foxp32 T cells that co-produce IL-10, IFN-c and TNF; however,
after the subsequent six-month dry season, a period of markedly reduced malaria transmission, P. falciparum–inducible IL-10
production remained partially upregulated only in children with persistent asymptomatic infections. These findings suggest
that in the face of P. falciparum re-exposure, children acquire exposure-dependent P. falciparum–specific immunoregulatory
responses that dampen pathogenic inflammation while enhancing anti-parasite effector mechanisms. These data provide
mechanistic insight into the observation that P. falciparum–infected children in endemic areas are often afebrile and tend to
control parasite replication.
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Introduction

In previously unexposed individuals, blood-stage Plasmodium

falciparum parasites rapidly replicate and almost invariably induce

fever and other symptoms of malaria [1] through the production

of pro-inflammatory cytokines and chemokines [2–4]. Although

the initial systemic inflammatory response is crucial for setting in

motion the innate and adaptive immune effector mechanisms that

control blood-stage parasites [5,6], dysregulated inflammation has

been linked to severe malaria [7,8] which only occurs in a minority

of individuals with infrequent or no prior malaria exposure [9].

Conversely, in malaria endemic areas where individuals are

repeatedly exposed, P. falciparum infections more commonly cause

a mild febrile illness or no symptoms at all, and parasite numbers

in the blood are generally kept in check, even in young children

[10–12] who have yet to acquire a fully protective antibody

repertoire [13]. The nature of the immune response that enables

most children to restrain P. falciparum-induced inflammation while

maintaining control of parasite replication remains elusive [6,14].

The notion of malaria ‘tolerance’ has long been invoked to

explain the common finding of low-level, asymptomatic blood-

stage infection in endemic areas [15], particularly among children,

as antibodies that reliably protect against febrile malaria are only

acquired after many years of exposure to genetically diverse and

clonally variant P. falciparum antigens [13]. Several mechanisms

have been proposed to explain malaria tolerance or ‘anti-disease’

immunity [14,16] including antibody-mediated neutralization of

P. falciparum pathogen-associated molecular pattern (PAMP)

molecules such as GPI anchors [14,17,18]; desensitization of

pattern-recognition receptor (PRR)-mediated signaling as a result
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of repeated stimulation [16]; and the production of anti-

inflammatory mediators such as IL-10 [2,19–21] and TGF-b
[21–23] that suppress inflammation-driven anti-parasite effector

mechanisms once parasite replication has been controlled [14].

Interestingly, it has long been speculated that parallels exist

between malarial tolerance and bacterial endotoxin tolerance

(reviewed in [16]). This speculation is based in part on early studies

in humans that showed that malaria induces cross-tolerance to the

febrile response normally induced by bacterial endotoxin [24,25].

The traditional view of endotoxin tolerance holds that immune

cells that are exposed to endotoxin have an altered response when

re-challenged with endotoxin, such that the production of pro-

inflammatory cytokines and chemokines is attenuated relative to

the response induced at homeostasis [26]. Whether P. falciparum

infection in humans ‘tolerizes’ immune cells in an analogous

manner is unknown. More specifically, there is no direct evidence

that febrile malaria in humans induces regulatory responses that

limit the production of pro-inflammatory cytokines and chemo-

kines upon re-exposure to P. falciparum parasites relative to

responses induced at homeostasis before malaria in the same

individual. Also, it is unclear how current views of malaria-induced

tolerance/regulatory responses account for the observation that

most children in endemic areas are able to restrain P. falciparum-

induced inflammation and simultaneously control parasite replica-

tion, since generalized suppression of P. falciparum-triggered

immune responses predicts that parasite replication would proceed

unhindered and cause severe disease.

A potential solution to this problem is that febrile malaria

temporarily alters immune cells such that the host responds to P.

falciparum re-exposure by downregulating the production of acute

phase pro-inflammatory mediators that contribute to fever and

other malaria symptoms while enhancing anti-parasite effector

mechanisms that control parasite replication, such as phagocytosis-

mediated clearance of blood-stage parasites. This hypothesis is

supported by a recent study by Foster et al. who used an in vitro

model of lipopolysaccharide (LPS) tolerance in murine macro-

phages to show that the regulation of LPS-triggered inflammation

is component-specific, such that pro-inflammatory mediators are

transiently silenced or ‘tolerized’ while antimicrobial effectors are

primed or enhanced upon re-challenge with LPS [27]. A similar

phenotype was observed in a human model of LPS tolerance [28],

but whether these observations reflect events induced by natural

infections in humans is unknown.

Here we tested the hypothesis that febrile malaria alters

children’s immune cells such that pro-inflammatory mediators

are downregulated and anti-parasite effector responses are

upregulated upon re-exposure to P. falciparum parasites compared

to that induced at homeostasis before malaria in the same

children. In addition, given the pivotal role of IL-10 in regulating

Plasmodium-induced inflammation in murine models [19,29], we

sought to elucidate the identity, function and kinetics of P.

falciparum-specific IL-10-producing cells. We further asked if P.

falciparum-inducible regulatory responses that limit inflammation

are maintained in untreated children who harbor chronic

asymptomatic infections, and whether these responses can be

recalled in children who have not been exposed to P. falciparum for

extended periods of time. To address these questions we applied a

systems biology approach [30] to a longitudinal analysis of

peripheral blood mononuclear cells (PBMCs) sampled from

Malian children over a 12-month period—starting at their healthy

baseline before the six-month malaria season; seven days after

treatment of their first febrile malaria episode of the ensuing

malaria season (when malaria symptoms had resolved); and after

the subsequent six-month dry season, a period of little to no P.

falciparum transmission.

We found that febrile malaria induces a marked shift in the

response to P. falciparum re-exposure with cells producing lower

levels of pro-inflammatory cytokines and chemokines and higher

levels of anti-inflammatory cytokines compared to responses

induced at homeostasis before malaria. Re-exposure was also

associated with enhanced expression of pathways involved in

phagocytosis and activation of adaptive immunity. This shift was

accompanied by a marked increase in P. falciparum-specific

CD4+Foxp32 T cells that co-produce IL-10, IFN-c and TNF.

IL-10 remained partially inducible in untreated children with

chronic asymptomatic infections whereas IL-10 was no longer

inducible in children whose infections had been cleared by

treatment.

Results

P. falciparum-inducible inflammation is downregulated
and anti-parasitic effectors are upregulated after febrile
malaria relative to responses induced at the healthy
baseline

To obtain a global view of transcriptional changes that persist in

children’s PBMCs after the clinical resolution of febrile malaria,

compared to each child’s own healthy baseline, we profiled RNA

expression of PBMCs collected from 34 healthy Malian children

before the six-month malaria season, when blood smears were

negative for P. falciparum parasites, and 7 days after treatment of

their first febrile malaria episode of the ensuing malaria season,

when malaria symptoms had resolved. The average age of these

children was 8.5 years and 32% were female. At their first febrile

malaria episode of the season, children had an axillary temper-

ature of .37.5uC (or their parents reported fever within 24 hours),

were infected with P. falciparum (geometric mean density 17,817

asexual parasites/ml of blood) and had no other cause of fever

discernible on physical examination. The average incidence of

febrile malaria during the six-month malaria season was similar for

the 34 children in this study compared to children in this age

Author Summary

Malaria remains a major cause of disease and death
worldwide. When mosquitoes infect people with malaria
parasites for the first time, the parasite rapidly multiplies in
the blood and the body responds by producing molecules
that cause inflammation and fever, and sometimes the
infection progresses to life-threatening disease. However,
in regions where people are repeatedly infected with
malaria parasites, most infections do not cause fever and
parasites often do not multiply uncontrollably. For
example, in Mali where this study was conducted, children
are infected with malaria parasites $100 times/year but
only get malaria fever ,2 times/year and often manage to
control parasite numbers in the blood. To understand
these observations we collected immune cells from the
blood of healthy children before the malaria season and 7
days after malaria fever. We simulated malaria infection at
these time points by exposing the immune cells to malaria
parasites in a test-tube. We found that re-exposing
immune cells to parasites after malaria fever results in
reduced expression of molecules that cause fever and
enhanced expression of molecules involved in parasite
killing. These findings help explain how the immune
system prevents fever and controls malaria parasite
growth in children who are repeatedly infected with
malaria parasites.

Control of Malaria Inflammation

PLOS Pathogens | www.plospathogens.org 2 April 2014 | Volume 10 | Issue 4 | e1004079



group in the larger cohort (1.6 and 1.5 episodes, respectively) [31].

By definition, these malaria-susceptible children had yet to acquire

P. falciparum-specific antibodies that reliably protect from febrile

malaria. Individual demographic and clinical data are shown in

Table S1. Malaria was effectively treated in all subjects with a

standard 3-day course of artemether/lumefantrine.

PBMCs were first analyzed directly ex vivo (not re-stimulated).

Principal components analysis of the microarray data showed

segregation of transcription profiles based on time-point (healthy

baseline vs. day 7 after malaria), but not age, gender or batch

effects (Figure S1A). Within-subject gene-expression changes were

computed and resulted in 1497 differentially expressed genes

(DEGs)—1,351 increased and 146 decreased after the resolution of

febrile malaria relative to baseline (Table S2). Ingenuity Pathway

Analysis (IPA) identified ‘‘Infectious Disease’’, ‘‘Immunological

Disease’’ and ‘‘Inflammatory Disease’’ among the top five

functional categories enriched with DEGs. Notably, all differen-

tially expressed genes encoding cytokines and chemokines that

have been associated with P. falciparum-induced fever and

inflammation [2–4,32], including the canonical pyrogenic cyto-

kines IL1B and TNF as well as the pro-inflammatory chemokines

IL8, CCL3 (MIP-1a) and CXCL2 (MIP-2a), were suppressed after

the resolution of malaria to lower levels than observed at baseline

(Figure 1A). Conversely, genes expressing molecules directly

involved in microbial killing and activation of adaptive immunity

were significantly upregulated after the resolution of febrile

malaria relative to the healthy baseline (Figure 1A). Specifically,

IPA identified the following canonical pathways as significantly

upregulated: ‘‘Toll-like receptor signaling’’ (P = 2.15e-6), ‘‘Fcc
receptor-mediated phagocytosis in macrophages and monocytes’’

(P = 1.8e-4), ‘‘Production of nitric oxide and reactive species in

macrophages’’ (P = 1.09e-7), ‘‘Antigen presentation pathway’’

(P = 0.0463), ‘‘T cell receptor signaling’’ (P = 1.19e-5) and ‘‘Inter-

feron signaling’’ (P = 5.08e-6) (Figure S1B). The expression of

several PRRs including Toll-like receptor (TLR)2 and TLR4 was

increased after malaria relative to baseline (Figure 1A), consistent

with recent in vivo exposure to P. falciparum PAMPs such as GPI

anchors [33], hemozoin [34], CpG-containing DNA motifs bound

to hemozoin [35] and AT-rich DNA motifs [36], but of note,

NLRP3, a putative receptor for P. falciparum hemozoin-induced IL-

1b production [37], was the only PRR to be downregulated after

malaria relative to homeostasis (Figure 1A).

Because changes in mRNA levels in PBMCs can reflect an

altered cell composition of the PBMC compartment or changes in

gene expression in discrete cell populations, we analyzed the

PBMCs used for gene-expression profiling by FACS and found no

significant differences in the percentage of CD4+ or CD8+ T cells,

B cells or monocytes after the resolution of febrile malaria relative

to the healthy baseline (Figure 1B). Moreover, at the individual

subject level we found that genes encoding myeloid-expressed pro-

inflammatory mediators were downregulated after resolution of

malaria relative to baseline irrespective of changes in the

percentage of monocytes (Figure 1C and Figure S1C), and even

as mRNA levels of other genes identified as myeloid-specific [38]

were unchanged or increased after malaria relative to baseline

(Figure S1D). Taken together, these data indicate that the changes

in mRNA levels that persist after the resolution of febrile malaria

relative to the healthy baseline reflect differential regulation of

gene expression rather than gross alterations in the composition of

the PBMC compartment.

These data indicate that febrile malaria induces transcriptional

changes in PBMCs that persist after the resolution of febrile

malaria; namely, we observed that the expression of genes

encoding pro-inflammatory mediators is suppressed while the

expression of molecules involved in microbial killing and activation

of adaptive immunity is enhanced after malaria relative to

baseline. On the basis of these findings we hypothesized that re-

exposure to P. falciparum parasites soon after the resolution of

febrile malaria would induce a qualitatively different immune

response relative to that induced at the healthy baseline. To test

this hypothesis and to investigate the molecular and cellular basis

of regulatory responses induced upon P. falciparum re-exposure, we

analyzed the same PBMCs from the same 34 children (collected at

the healthy baseline before the malaria season and seven days after

treatment of the first febrile malaria episode) following in vitro

stimulation with P. falciparum-infected red-blood cell (iRBC) lysate.

iRBC-inducible gene expression as well as secreted and intracel-

lular cytokine production were examined with each child serving

as his or her own healthy baseline control.

Within-subject gene expression changes induced by iRBC

stimulation at both time points were computed and resulted in

456 DEGs—148 decreased and 308 increased after the resolution

of febrile malaria relative to that induced at the healthy baseline

(Table S3). IPA identified ‘‘Inflammatory Response’’ as the

functional category with the highest enrichment score (P = 3.36e-

34). Within this functional category, all differentially expressed

pro-inflammatory cytokines and chemokines (IL1B, IL6, IL8, IL19,

IL24, CCL3, CCL3L1, CCL19, CCL20, CCL22, CXCL1, CXCL2,

CXCL3, and CXCL6) were downregulated in response to iRBC

stimulation after the resolution of malaria relative to the iRBC-

induced response at baseline (Figure 1D). In line with this result,

IPA identified the following canonical pathways as significantly

downregulated: ‘‘Acute phase response signaling’’ (P = 5.94e-4),

‘‘Role of hypercytokinemia/hyperchemokinemia in pathogenesis

of Influenza (P = 1.19e-3), ‘‘IL-6 signaling’’ (P = 1.18e-3), ‘‘Agran-

ulocyte adhesion and diapedesis’’ (P = 8.82e-6), ‘‘Granulocyte

adhesion and diapedesis’’ (P = 6.55e-9) and ‘‘Role of cytokines in

mediating communication between immune cells’’ (P = 0.017)

(Figure S1E). Consistent with the downregulation of pro-inflam-

matory responses, NFKB1 and TREM-1, a positive regulator of

inflammation [39], were downregulated, while several negative

regulators of inflammation were upregulated including IL18BP,

IL1R2, BTLA and SAMHD1 (Figure 1D).

In contrast to the downregulation of pro-inflammatory cytokine

and chemokine responses, genes encoding molecules involved in

microbial killing and activation of adaptive immunity were

upregulated by iRBC stimulation after malaria relative to

responses induced by iRBC stimulation at baseline. These

included molecules involved in opsonic and non-opsonic phago-

cytosis, phagolysosome maturation, antigen presentation and co-

stimulation (Figure 1D). IPA identified the following canonical

pathways as significantly upregulated: ‘‘iNOS signaling’’

(P = 0.0012), ‘‘Antigen presentation pathway’’ (P = 6.87e-5), ‘‘T

helper cell differentiation’’ (P = 1.88e-3) and ‘‘T cell receptor

signaling’’ (P = 0.035) (Figure S1E). Together these data suggest

that re-exposure to P. falciparum parasites after a recent episode of

febrile malaria induces the differential expression of functionally

distinct components of the immune response, whereby acute phase

pro-inflammatory cytokines and chemokines that drive the initial

systemic inflammatory response are restrained, while pathways

involved in microbial killing and activation of adaptive immunity

are upregulated.

To validate the expression of selected immune-related genes, we

used quantitative real time (qRT)-PCR to analyze PBMCs from

the 17 children who had microarray data from the ex vivo and

iRBC-stimulated experiments at both time points (before and after

malaria). We found a positive correlation (r = 0.8653; P,0.0001)

for gene expression as detected by microarray and qRT-PCR

Control of Malaria Inflammation
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Figure 1. A molecular pattern of restrained inflammation and enhanced anti-parasite effector function upon P. falciparum re-
exposure. (A) PBMCs were collected from 34 healthy children with blood smears negative for P. falciparum infection before the malaria season (HB)
and 7 days after treatment of their first febrile malaria episode of the ensuing malaria season when malaria symptoms had resolved (d7). RNA was
extracted from PBMCs immediately after thawing and hybridized onto Affymetrix GeneChip Human 1.0 ST arrays. RNA from all 68 PBMC samples was
of sufficient quantity and quality for microarray analysis. Nine of 68 samples did not pass the microarray quality assessment and were removed from
further analysis (see Supplemental Figure 1A) such that 25 children with paired RNA samples at the healthy baseline and 7 days after malaria were
analyzed. The heat map shows ex vivo RMA-normalized log2 ratios (d7/HB) of differentially expressed genes (rows) for each child (columns). Genes are
grouped and color-coded by function as indicated. (B) PBMCs analyzed by FACS for B cells (CD19+), T cells (CD3+), CD3+CD4+ T cells, CD3+CD8+ T cells,

Control of Malaria Inflammation
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(Figure 1E and Table S4). The qRT-PCR data confirmed

decreased expression of the canonical fever-inducing cytokines

IL1B and IL6 and increased expression of the anti-inflammatory

cytokine TGFB after resolution of febrile malaria relative to the

healthy pre-malaria baseline, in both the unstimulated and iRBC-

stimulated experiments (Figure 1F). Therefore, the qRT-PCR data

confirmed a molecular pattern of restrained P. falciparum-inducible

inflammation in children who had recently recovered from febrile

malaria.

P. falciparum-inducible IL-10 is upregulated after the
resolution of febrile malaria and partially maintained in
children with persistent asymptomatic infection

IL-10 plays a critical role in controlling and resolving

inflammation by limiting the production of pro-inflammatory

cytokines and chemokines [40], yet we did not observe differential

expression of IL10 in the microarray data. Given the known

temporal dissociation between IL-10 transcription and translation

[41], we assayed supernatants of iRBC-stimulated PBMCs for

secreted IL-10 using a multiplex assay that also measured IL-1b,

IL-6, IL-8 and TNF. We observed that P. falciparum-inducible IL-

10 production was higher after the resolution of febrile malaria

relative to the healthy baseline of the same children before the

malaria season (P,0.0001; Figure 2A), while P. falciparum-

inducible production of the pro-inflammatory chemokine IL-8

was lower after the resolution of febrile malaria relative to baseline

(P,0.0001; Figure 2A), in agreement with the microarray data. P.

falciparum-inducible production of IL-1b and IL-6 trended toward

lower levels after the resolution of febrile malaria relative to

baseline, but the decrease was not statistically significant

(Figure 2A). Because IL-1b and IL-6 are primarily produced by

monocytes/macrophages, we isolated monocytes/macrophages

(Figure S2A) from 9 additional children who had PBMCs available

at their healthy baseline before the malaria season and 14 days

after their first febrile malaria episode of the ensuing malaria

season (Table S1). We stimulated these monocytes/macrophages

with iRBCs for 6 hours and measured IL-1b and IL-6 in the

supernatants. We found that P. falciparum-inducible production of

IL-1b and IL-6 by monocytes/macrophages was lower after the

resolution of febrile malaria relative to that induced at baseline

(P = 0.0066 and P = 0.0003 for IL-1b and IL-6 respectively;

Figure 2B), consistent with a reduced risk of fever in children who

are exposed to ongoing P. falciparum transmission during the

malaria season.

In an independent experiment, we sought to determine if the

upregulation of P. falciparum-inducible IL-10 production after

malaria influences the production of pro-inflammatory cytokines.

We observed that blocking IL-10 activity with antibodies specific

for IL-10 and the IL-10 receptor (Figure 2C) enhanced iRBC-

inducible TNF and IL-6 production in some but not all children

after the resolution of febrile malaria compared to baseline

(Figures 2D and E).

We next asked if P. falciparum-inducible IL-10 responses could be

recalled in children who had not been exposed to P. falciparum

transmission for an extended period of time. We performed iRBC

stimulation of PBMCs collected from 18 additional children

(Table S1) at their healthy baseline before the malaria season, 7

days after treatment of their first malaria episode of the ensuing 6-

month malaria season, and after the following 6-month dry season,

a period of little to no P. falciparum transmission. This independent

experiment confirmed that P. falciparum-inducible IL-10 is

upregulated after the resolution of febrile malaria relative to

baseline (P = 0.0082; Figure 2F). However, in the absence of

ongoing malaria exposure, children reverted to an apparent

homeostatic baseline in which IL-10 production was no longer

inducible (Figure 2F), suggesting that ongoing malaria exposure is

required to maintain P. falciparum-inducible IL-10 production

capacity. To test this hypothesis we identified 16 untreated

children (Table S1) whose asymptomatic P. falciparum infections

persisted through the six-month dry season, and compared their P.

falciparum-inducible IL-10 response to age-matched children who

were uninfected at the same time point at the end of the dry

season. We observed that P. falciparum-inducible IL-10 responses of

persistently infected asymptomatic children were higher than

responses of age-matched uninfected children (P = 0.0166;

Figure 2G), suggesting that P. falciparum-inducible IL-10 upregula-

tion is partially maintained by ongoing P. falciparum exposure and

that IL-10 upregulation may contribute to protection from febrile

malaria in the context of ongoing P. falciparum exposure.

P. falciparum-inducible IL-10 is produced by
CD4+CD25+Foxp32 T cells that co-produce IFN-c and TNF

Despite evidence that IL-10 plays a critical role in regulating

Plasmodium-induced inflammation in murine models, the cellular

sources of IL-10 and the functionality and kinetics of IL-10-

producing cells in the context of human malaria remain unclear

[42]. To identify the predominant cellular source of P. falciparum-

inducible IL-10 and to investigate longitudinally the functionality

and kinetics of IL-10-producing cells in children exposed to intense

seasonal malaria, we analyzed PBMCs by FACS with intracellular

staining for IL-10, IFN-c and TNF after in vitro iRBC stimulation at

the healthy baseline before the malaria season, 7 days after malaria

treatment (when symptoms had resolved), and after the 6-month dry

season. Consistent with the kinetics of P. falciparum-inducible

secreted IL-10 production described above (Figure 2F), we found

that P. falciparum-inducible IL-10 production by CD4+ T cells

increased significantly after the resolution of febrile malaria relative

to the healthy baseline (P = 0.0095; Figure 3A), and then reverted to

a state in which IL-10 production was no longer inducible by the

end of the following six-month dry season (Figure 3A). Interestingly,

and monocytes (CD14+) at the healthy baseline and after malaria. (n = 34 children; except CD14+ monocytes, n = 30). (C) Ratio of monocyte
percentage (d7/HB) versus the ratio of the expression level of monocyte-derived pro-inflammatory cytokines and chemokines (d7/HB). Each point
represents an individual subject (n = 21 children with paired samples). (D) RNA was extracted from PBMCs of the same 34 children after 18 h of in
vitro stimulation with P. falciparum-infected red blood cell (iRBC) lysate. After stimulation with iRBC lysate, 22 of the 34 children had RNA samples
from both time points of sufficient quantity and quality for microarray analysis and also passed the microarray quality assessment. The heat map
shows RMA-normalized log2 ratios (d7/HB) of differentially expressed genes (rows) for each child (columns) in response to in vitro iRBC lysate
stimulation. Genes are grouped and color-coded by function as indicated. (E) q-RT-PCR confirmation of the microarray data. The data represent the
results of one experiment with 6 genes (IL1B, IL6, IL10, TGFB1, TLR2, CXCL5) from 17 subjects at two time points (d7 and HB) from both the ex vivo
unstimulated and in vitro iRBC-stimulated datasets. Each symbol represents a single gene at a given time point. PCR expression computed as antilog2

–dCT. n = 497 XY pairs. (F) q-RT-PCR expression of genes encoding the pro-inflammatory cytokines IL1-b and IL-6 and the anti-inflammatory cytokine
TGF-b in PBMCs of children (n = 17) collected at the healthy baseline (HB) and after resolution of febrile malaria (d7), either directly ex vivo
(unstimulated) or after in vitro stimulation with iRBCs for 18 h. ns, not significant (P$0.05), P values determined by the paired ttest (B), Pearson’s (C),
Spearman’s (E) or paired Wilcoxon rank sum test (F). Data are shown as the means 6 s.d. (B) or means 6 s.e.m. (F).
doi:10.1371/journal.ppat.1004079.g001
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the majority of P. falciparum-inducible IL-10-producing PBMCs

following febrile malaria were CD3+CD4+ T cells (Figure 3B; mean

53.1%, 95%CI: 44.8–61.5) and most of these were CD25+FOXP32

(Figure 3B; mean 78.8%, 95%CI: 72.2–85.5), while FOXP3+CD4+

T cells (regulatory T cells) represented only a small percentage of IL-

10-producing T cells. P. falciparum-inducible IFN-c- and TNF-

producing CD4+ T cells also increased after the resolution of

malaria compared to baseline, and like IL-10, reverted to

homeostasis after the dry season (Figure 3A). At the single-cell level

the majority of IL-10-producing P. falciparum-inducible CD4+ T cells

also produced IFN-c, or IFN-c plus TNF (Figure 3C–E), thus

identifying these cells as ‘self-regulating’ Th1 effector cells [43].

From these results and the microarray data emerges a consistent

theme whereby re-exposure to P. falciparum parasites after recent

febrile malaria induces exposure-dependent regulatory mechanisms

that limit the production of pro-inflammatory mediators that drive

systemic inflammation while enhancing effector mechanisms that

control parasite replication.

Because whole microbe stimulation with P. falciparum iRBCs

involves a complex mixture of antigens and stimuli for innate

receptors, we asked whether P. falciparum-inducible IL-10 produc-

tion by CD4+ T cells requires antigen presenting cells (APCs) and

T cell receptor engagement. We magnetically isolated CD4+ T

cells that had been collected after the resolution of febrile malaria

and found that they failed to produce IL-10 in response to iRBC

stimulation in the absence of antigen-presenting cells (Figure 3F).

Moreover, iRBC-induced IL-10 production by CD4+ T cells was

abrogated in PBMC cultures in the presence of antibodies that

block major histocompatibility complex (MHC) class II molecules

(Figure 3G). Together these data demonstrate that P. falciparum-

inducible IL-10 production by CD4+ T cells is T cell receptor-

dependent.

Figure 2. P. falciparum-inducible IL-10 production is upregulated upon re-exposure and partially maintained by persistent
asymptomatic infection. (A) Production of IL-10, IL-8, IL1-b, IL-6 and TNF by PBMCs in response to in vitro stimulation with iRBC lysate at the
healthy baseline before the malaria season (HB) and 7 days after malaria (d7) (n = 28 children with paired samples). (B) Production of IL-1b and IL-6 by
isolated monocytes/macrophages after 6 h of in vitro stimulation with iRBC lysate. Results are shown as the ratio of cytokines produced 14 days after
malaria (d14) versus the healthy baseline before the malaria season (HB) (n = 9 children with paired samples) (P = 0.0066 and P = 0.0003 for IL-1b and
IL-6 respectively). (C) A positive control showing IL-10 production by PBMCs in response to in vitro stimulation with iRBC lysate in the presence of
blocking antibodies specific for IL-10 and the IL-10 receptor or the isotype control (n = 17). (D,E) TNF and IL-6 production by PBMCs in response to in
vitro stimulation with iRBC lysate in the presence of blocking antibodies specific for IL-10 and the IL-10 receptor at the healthy baseline (HB), 7 days
after malaria (d7) and at the healthy baseline after the subsequent 6-month dry season (HB9) (n = 20 children, 9 paired in the 3 conditions). (F) IL-10
production by PBMCs in response to in vitro stimulation with iRBC lysate at the healthy baseline before the malaria season (HB), 7 days after malaria
(d7) and at the healthy baseline after the subsequent 6-month dry season (HB9), a period of little to no P. falciparum transmission (n = 15 children). (G)
IL-10 production by PBMCs in response to in vitro stimulation with iRBC lysate among children with asymptomatic P. falciparum infection at the end
of the dry season (HB Pf+, n = 16) versus aged-matched, healthy uninfected children at the same time point (HB Pf2, n = 34). Data are presented as
fold change relative to PBMCs stimulated with uninfected RBC (uRBC) lysate (A, F, G). ns, not significant (P$0.05), P values were determined by a
paired ttest (A, C), one-sample Student’s T-tests comparing the mean ratio against a 1:1 ratio (B), paired ttest followed by Bonferroni’s test (D–F) or
unpaired ttest (G). Data are shown as the means 6 s.d.
doi:10.1371/journal.ppat.1004079.g002
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Having established that iRBC-inducible IL-10 production by

CD4+ T cells requires APCs and T cell receptor engagement, we

sought to understand the role that in vivo conditioning of APCs

plays in modulating IL-10 production by P. falciparum-specific

CD4+ T cells. We magnetically isolated CD4+ T cells collected

after the resolution of febrile malaria and cultured these cells with

autologous APCs collected at the healthy baseline before the

malaria season or after the resolution of febrile malaria. Under

both conditions iRBC-inducible IL-10 production by CD4+ T cells

was restored to similar levels (Figures 3F), suggesting that the in vivo

conditions during acute febrile malaria shape the functional

response of CD4+ T cells in a manner that is independent of the in

vivo conditioning of APCs.

Discussion

In our previous investigations at this study site we observed that

the risk of febrile malaria slowly decreases over years as individuals

are exposed to intense seasonal P. falciparum transmission such that

adults rarely experience febrile malaria when infected with blood-

stage parasites [44]. The gradual acquisition of blood-stage

immunity that reliably protects from the onset of febrile malaria

likely reflects the need for repeated infections over years to achieve

levels of broadly reactive antibodies that exceed a protective

threshold [13,45]. However, even malaria-susceptible children at

this study site (who by definition have yet to acquire reliably

protective antibodies) experience only 1 to 2 febrile malaria

episodes per six-month malaria season despite $100 infective

mosquito bites per person each season, and generally these

children manage to keep parasite numbers in the blood in check

[44]. These observations prompted us to investigate immune

mechanisms beyond antibody responses that might contribute to

protection from febrile malaria and parasite replication in children

who are exposed to repeated P. falciparum infections, and also to

investigate how children become susceptible again to febrile

malaria after a period of decreased P. falciparum exposure.

We found that acute febrile malaria alters children’s PBMCs

such that P. falciparum re-exposure results in downregulation of

acute phase pro-inflammatory cytokines that drive fever and

systemic inflammation (e.g. IL-1b and IL-6 from monocytes/

macrophages), and upregulation of immune mechanisms involved

in control of inflammation (e.g. IL-10-producing CD4+ T cells)

and parasite clearance (e.g. IFN-c-producing CD4+ T cells,

phagocytosis and phagolysosome maturation) (Figure 4). The

maintenance of this regulatory state appears to depend on recent

or ongoing P. falciparum exposure as children revert to a

homeostatic baseline in the absence of ongoing P. falciparum

exposure during the six-month dry season. The short-lived,

exposure-dependent nature of this response mirrors the kinetics

of P. falciparum-specific antibody responses in children [44,45],

suggesting that these responses work in concert to protect children

as long as P. falciparum exposure is ongoing. These data offer

mechanistic insights into how children who are repeatedly infected

with P. falciparum commonly manage to remain afebrile and

control parasite replication, and how they become susceptible

again to febrile malaria after a period of reduced P. falciparum

exposure. The possibility that treatment with artemether/lume-

fantrine contributed to these findings cannot be excluded.

These data shed light on the long-standing and enigmatic

clinical notion of ‘premunition’—a partially effective, exposure-

dependent immune response that protects against illness and high

numbers of parasites in the blood without completely eliminating

the infection [12,46,47]. Although premunition is often viewed as

a state of immune dysregulation or suppression [12,46,47], we

speculate that it evolved as an appropriate immune response in the

face of unrelenting exposure to genetically and antigenically

diverse parasites such that young children are at least partially

protected from potentially life-threatening inflammation and

unchecked parasite replication before they acquire durable,

broadly reactive antibodies that reliably protect against the onset

of malaria symptoms. Although we did not study severe malaria

per se—an overlapping set of syndromes [48] which have been

linked to excessive inflammation [49]—it is conceivable that the

ability to rapidly downregulate P. falciparum-inducible inflamma-

tion in early life contributes to the rapid acquisition of strain-

transcendent immunity to severe malaria which may occur after

only one or two symptomatic infections [50], and conversely, that

the small percentage of children who develop severe malaria are

those whose genetic background, environment (e.g. co-infection

history, microbiota, nutritional status) or specific interaction with

parasite virulence factors [51–54] tips them toward dysregulated

pathologic inflammatory responses.

The prospective design of this study, in which each subject

served as their own healthy control, provides a rare view of the

regulation and functional plasticity of innate and adaptive immune

cells in response to a natural infection in humans. In general,

innate immune cells such as monocytes/macrophages first detect

pathogens through PRRs such as TLRs and NOD-like receptors

(NLRs) which recognize highly conserved PAMPs [55]. Through

these initial host-pathogen interactions, innate immune cells

provide the first line of defense against pathogen invasion and

also direct the quality of antigen-specific B and T cell responses.

To date, only a handful of P. falciparum PAMPs and their respective

PRRs have been identified. These include GPI anchors (TLR2.

Figure 3. P. falciparum-inducible IL-10 is mainly produced by CD4+CD25+Foxp32 T cells that co-produce IFNc and TNF. (A) PBMCs
from the healthy baseline (HB), 7 days after malaria (d7), and at the healthy baseline at the end of the subsequent dry-season (HB9) were stimulated
for 18 h with iRBC lysate and assayed for the production of IL-10, IFNc and TNF by intra-cellular FACS. Results are shown as the ratio of live CD3+ CD4+

antigen-experienced cells (CD45RO+ CD27+, CD45RO+ CD272, and CD45RO2 CD272) producing IL-10, IFN-c or TNF in response to stimulation with
iRBC lysate vs. uninfected RBC (uRBC) lysate (n = 16, 13 paired samples). (B) Overlay of IL-10-producing cells (red) among all live cells (gray) in a CD3
vs. CD4 dot plot (top) (n = 14), and IL-10-producing CD4+ T cells (red) with all CD4+ T cells (gray) in CD25 vs. FoxP3 dot plot (bottom) (n = 9;
representative subject shown). (C) Using SPICE analysis, cytokine-producing CD4+ T cells were divided into 7 distinct subpopulations producing any
combination of IL-10, IFNc and TNF (n = 16). (D) Pie chart representation of the combination of cytokines produced by CD4+ T cells after iRBC
stimulation for 3 representative donors 7 days after malaria (d7). The black arcs indicate the IL-10-producing CD4+ T cells. (E) Representative FACS
plots of live CD3+ CD4+ antigen-experienced cells producing IL-10, IFNc and TNF after iRBC stimulation of PBMCs collected at the healthy baseline
(HB), 7 days after malaria (d7) and at the healthy baseline at the end of the subsequent dry-season (HB9). (F) CD4+ T cells were isolated from PBMCs
which had been collected from children 7 days after malaria and were then stimulated for 18 h with iRBC or uRBC lysate in the absence (CD4+T d7) or
presence of non-CD4+T cells isolated from PBMCs of the same individuals collected at either the healthy baseline (CD4+T d7 + nonCD4+T HB) or 7
days after malaria (CD4+T d7 + nonCD4+T d7) (n = 8 paired samples). (G) PBMCs collected from children 7 days after malaria were stimulated for 18 h
with iRBC lysate and assayed for the production of IL-10 in the presence (aMHC-II) or absence (isotype) of antibodies specific for HLA-DR, -DQ and -DP
(n = 8). ns, not significant (P$0.05), P values determined by a linear mixed model for repeated measures ANOVA with Tukey HSD post hoc tests (A)
and permutation re-sampling tests (F, G). Data are shown as the means 6 s.d.
doi:10.1371/journal.ppat.1004079.g003
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TLR4) [33], hemozoin (NLRP3) [34], CpG-containing DNA

motifs bound to hemozoin (TLR9) [35] and AT-rich DNA motifs

(unknown cytosolic receptor) [36]. Studies in vitro and in animal

models show that these PAMPs drive monocytes/macrophages to

produce pro-inflammatory cytokines and chemokines such as IL-

1b, IL-6, IL-8 and TNF [33–35]. These observations are

consistent with studies in humans that show these cytokines and

chemokines rise and fall in the serum of individuals treated for

febrile malaria [2–4]. However, prior to this study, the nature of

the inflammatory response induced by P. falciparum re-exposure

relative to that induced at the healthy baseline of the same

individuals was unknown. Here we show that the capacity of

monocytes/macrophages to produce the canonical pyrogenic

cytokines IL-1b and IL-6 is reduced upon re-exposure to P.

falciparum parasites relative to that induced at the healthy baseline

of the same individuals—a finding we observed at the mRNA level

by microarray and qRT-PCR in PBMCs, and at the protein level

in isolated monocytes/macrophages.

Although the precise molecular mechanisms that regulate P.

falciparum-inducible inflammation remain to be fully elucidated,

this study offers insight into the multiple levels at which this

regulation might occur. For example, we observed that NFKB1

expression was downregulated after malaria relative to baseline.

NFKB1 encodes the p50 component of the canonical p65/p50 NF-

kB heterodimeric transcription factor that stimulates the expres-

sion of pro-inflammatory cytokines such as IL-1b and IL-6 [56].

We also observed decreased expression of NLRP3 after malaria

relative to baseline. NLRP3 encodes a component of the NALP3

inflammasome which is expressed in myeloid cells and activates

caspase-1, thereby promoting the maturation and secretion of IL-

1b [57]. Other differentially expressed PRRs such as TLR2 and

TRL4 were upregulated after malaria relative to baseline,

suggesting that the regulation of P. falciparum-inducible inflamma-

tion does not occur at the level of TLR expression. Interestingly,

TLR expression is also upregulated in the context of tolerance

induced by gram positive bacteria [58], whereas tolerance induced

by gram negative bacteria is associated with reduced expression of

TLR2 and TLR4 [59], underscoring the microbe-specific nature

of immune-regulation.

After the resolution of febrile malaria we also observed

increased expression of genes encoding proteins that limit the

inflammatory response including IL18BP, IL1R2, CTLA4, BTLA,

Figure 4. Proposed model by which children remain asymptomatic and control parasitemia upon P. falciparum re-exposure. In
children without prior or recent malaria exposure, P. falciparum infection induces a robust pro-inflammatory cytokine and chemokine response (e.g.
IL-1b, IL-6, IL-8) whereas effector mechanisms that mediate parasite clearance (phagocytosis, phagolysosome activation, antigen presentation, T cell
co-stimulation and IFN-c production by CD4+ T cells) are not readily inducible, leaving children susceptible to fever and other systemic symptoms of
malaria as well as poorly controlled parasite replication. In contrast, febrile malaria induces an exposure-dependent regulatory state (shown here)
whereby re-exposure to P. falciparum results in reduced production of pro-inflammatory cytokines and chemokines and enhanced expression of
regulatory cytokines (e.g. IL-10 production by CD4+ T cells) and pathways involved in phagocytosis-mediated clearance of infected red blood cells
and activation of adaptive immunity, thus enabling children to remain asymptomatic and control parasite replication in the face of ongoing P.
falciparum exposure. In addition, P. falciparum-specific IgG levels are low in children who have not been recently exposed to malaria, but transiently
increase in response to P. falciparum infection [44,45], further enhancing exposure-dependent parasite clearance through opsonization and
phagocytosis of infected erythrocytes. Arrows indicate the direction of expression observed in this study of molecules at the mRNA and/or protein
levels induced by P. falciparum re-exposure after febrile malaria relative to responses induced by P. falciparum exposure at the healthy baseline.
Molecules are color-coded by biological function.
doi:10.1371/journal.ppat.1004079.g004
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SAMHD1 and TNFSF10, as well as decreased expression of genes

encoding proteins that promote inflammation including PTGS2

and TREM1. Further studies are needed to more clearly elucidate

the signaling networks involved in regulating the immune response

to P. falciparum infection and to fully understand the relationships

between perturbations to these networks and the variability in

malaria clinical outcomes.

The gene expression microarray data also shed light on the

regulation of chemotactic responses [60] in malaria. Relative to

the response induced at the healthy baseline, re-exposure to P.

falciparum parasites was associated with downregulated expression

of chemokines that recruit macrophages (CCL3, CCL3L1;

Figures 1A, 1D and 4) and neutrophils (CXCL1, CXCL2, CXCL3,

CXCL6; Figures 1A, 1D and 4), but upregulated expression of

monocyte/macrophage-specific chemokine receptors (CCR1,

CCR5; Figure 4). We postulate that this pattern reflects the fine-

tuning of chemotactic responses in the face of ongoing or repeated

P. falciparum exposure, whereby systemic chemokine release is

restrained to decrease the potential for tissue damage caused by

aberrant trafficking and accumulation of effector cells such as

neutrophils, whereas the reciprocal regulation of monocyte/

macrophage-specific chemokines (repressed) and chemokine

receptors (increased) enhances the sensitivity of monocyte/

macrophages to detect decreased concentrations of chemokines.

Murine models clearly demonstrate that IL-10 and TGF-b play

critical roles in regulating Plasmodium-induced inflammation [19,22].

In humans, IL-10 and TGF-b levels increase in serum during acute

febrile malaria and then fall after treatment [2,20], consistent with a

role for these cytokines in restraining and resolving P. falciparum-

induced inflammation during a single malaria episode. However,

whether febrile malaria conditions the immune system to modify the

production of IL-10 and TGF-b upon subsequent exposure to P.

falciparum within the same individual remained an open question.

Here we show that P. falciparum-inducible IL-10 and TGF-b
production/expression is upregulated after the resolution of febrile

malaria relative to that which is inducible at the healthy baseline of

the same individuals. In addition, we observed that IL-10 blockade

in vitro enhanced IL-6 and TNF production in some but not all

children, consistent with a role for IL-10 in controlling inflamma-

tion in the setting of P. falciparum re-exposure, but also highlighting

the complexity of regulatory responses that restrain P. falciparum-

induced inflammation.

Given the role of IL-10 in regulating Plasmodium-induced

inflammation, we sought to illuminate the identity, function and

kinetics of P. falciparum-specific IL-10-producing cells. Previous

studies in humans have shown that total FOXP3+ T regulatory

cells (Tregs) increase in response to experimental [23] and natural

[61] P. falciparum infection (reviewed in [42]), which suggested that

Treg-generated anti-inflammatory cytokines play an important

role in controlling P. falciparum-inducible inflammation. However,

subsequent cross-sectional studies failed to conclusively show

significant differences in Treg responses between individuals with

mild and severe malaria [62,63]. Here we show that

CD4+CD25+Foxp32 T cells are the predominant source of P.

falciparum-inducible IL-10, whereas Tregs contributed minimally to

the overall IL-10 response. We demonstrate that IL-10 producing

CD4+CD25+Foxp32 T cells are P. falciparum-specific, in that they

require APCs and T cell receptor engagement to produce IL-10.

We also found that P. falciparum-inducible IL-10 production by

CD4+ T cells isolated after malaria did not change significantly

when these cells were co-cultured with homologous APCs

collected before malaria, although there was a trend toward

enhanced IL-10 production by these CD4+ T cells when cultured

with APCs collected after malaria.

Interestingly, we observed that a significant proportion of P.

falciparum-specific IL-10 producing CD4+CD25+Foxp32 T cells

co-produced the Th1 cytokines IFN-c and/or TNF. Similar ‘self-

regulating’ Th1 cells that co-produce IL-10 and IFN-c were first

identified in the lungs of patients with active pulmonary

tuberculosis [64] and have since been observed in mice infected

with Toxoplasma gondii [65] and Leishmania major [66] as well as in

humans with visceral leishmaniasis [67]. Intriguingly, we observed

that P. falciparum-specific IL-10 was only inducible in activated Th1

cells after recent febrile malaria, and that after the dry season IL-

10 and IFN-c were no longer inducible through P. falciparum

stimulation. This is consistent with a recent study of Ugandan

children by Jagannathan et al. in which the frequencies of P.

falciparum-specific CD4+ T cells co-producing IFN-c and IL-10

were inversely associated with days since last malaria episode [68].

Together these data support the hypothesis that IL-10 production

by antigen-specific Th1 cells represents a normal phase of their

differentiation program which is reached after full activation in

order to restrain the inflammatory response while still allowing an

efficacious immune response [43,65], namely, IFN-c production

that promotes phagocytosis-mediated clearance of blood-stage

parasites.

Importantly, we show that P. falciparum-specific IL-10 produc-

tion remains inducible in some but not all untreated children

whose low-level asymptomatic P. falciparum infections persisted

through the six-month dry season, suggesting that the production

of IL-10 and IFN-c is finely tuned such that parasitemia is

controlled without inducing clinically overt inflammation—poten-

tially explaining the long-standing clinical observation that most

individuals, if left untreated after their initial bout of febrile

malaria, become afebrile and maintain control of parasitemia for

months before the infection is finally cleared. The exposure-

dependent inducibility of IL-10 production by Th1 cells may also

explain our previous observation at the same study site that

children with asymptomatic P. falciparum infection at the end of the

dry season are at lower risk of febrile malaria during the ensuing

malaria season [31], whereas uninfected children at the end of the

dry season are at increased risk—corresponding temporally with

their return to a homeostatic baseline in which P. falciparum

exposure induces a pro-inflammatory phenotype. The exposure-

dependent inducibility of IL-10 is also consistent with anecdotal

reports of rapidly waning clinical immunity to febrile malaria in

those who emigrate from malaria endemic areas [69]. Taken

together these data point toward a protective effect of P. falciparum-

specific IL-10 producing Th1 cells in malaria, a hypothesis

supported by a cross-sectional study in The Gambia which showed

a higher frequency of total IL-10 producing Th1 cells in children

with mild versus severe malaria [62]. In contrast, a study in

Uganda recently reported that frequencies of CD4+ T cells co-

producing IFN-c and IL-10 were not associated with protection

from future malaria, although imprecise measures of malaria

exposure may have led to spurious associations with protection

[68]. More studies are needed to define the potential role of these

cells in protection from malaria and to elucidate the molecular

basis of their remarkable functional plasticity [70]—information

that could define ways in which these cells could be safely induced

and maintained through vaccination. Further studies are also

needed to disentangle the relative contributions of IL-10

upregulation and antibodies to protection from malaria.

Malaria-induced regulatory responses that control inflammation

are often viewed as globally immunosuppressive, which predicts

that parasites would grow unimpeded in individuals residing in

areas of ongoing P. falciparum transmission. However, this model is

at odds with the common finding of low-level, asymptomatic
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infection among children in endemic areas. Therefore a key

finding of this study is that despite the downregulation of P.

falciparum-inducible inflammation after the resolution of malaria,

pathways involved in clearance of blood-stage parasites and

activation of adaptive immunity were upregulated. Specifically, we

observed P. falciparum-inducible upregulation of genes encoding

proteins that mediate opsonic (e.g. FCGR1) and non-opsonic (e.g.

CR1, CD36) phagocytosis, phagolysosome maturation, antigen

processing and presentation, and T cell co-stimulation (Figure 4).

The limited blood volume available from children enrolled in this

study precluded concomitant functional confirmation of these

observations; however, the observed gene expression pattern of

enhanced anti-microbial activity after the resolution of febrile

malaria is consistent with the results of a study in which malaria-

naı̈ve adults, who were experimentally infected with P. falciparum,

showed enhanced macrophage phagocytic activity after treatment

relative to baseline [71]. Non-opsonic phagocytosis of iRBCs is

considered to be an important first line of defense in non-immune

or partially immune hosts who have yet to acquire P. falciparum-

specific opsonizing antibodies [72]. Indeed, others have shown

that the scavenger receptor CD36 mediates phagocytosis of non-

opsonized iRBCs [73], and interestingly, does so without inducing

pro-inflammatory cytokines [73,74].

This study reveals several intriguing parallels between the

regulation of P. falciparum-triggered inflammation and endotoxin

tolerance [75], a link that is particularly germane in light of earlier

studies in humans that showed that malaria induces cross-

tolerance to the febrile response normally induced by bacterial

endotoxin [24,25], suggesting at least partial overlap of regulatory

pathways induced by Plasmodium and gram negative bacteria.

Indeed, similar to what has been described in an in vitro model of

LPS tolerance in murine macrophages [27], we observed that the

regulation of P. falciparum-triggered responses is component-

specific, such that acute phase pro-inflammatory mediators such

as IL-1b and IL-6 are transiently downregulated or ‘tolerized’,

while anti-parasitic effector pathways are primed or enhanced

upon re-challenge with P. falciparum parasites. Further reductionist

studies are needed to define the molecular mechanisms by which

this regulation occurs including the potential role of chromatin

modification [76] and microRNAs [77]. It will be of interest to

understand how malaria-induced epigenetic reprogramming of

innate immune cells—or ‘‘trained immunity’’—differs from that

induced by other pathogens [78,79].

To our knowledge, no human study has evaluated the genome-

wide transcriptional response to a natural infection in which each

subject serves as his or her own healthy control. Nearly all

individuals at the study site become infected with P. falciparum

within a predictable window of time each year [80], which enabled

us to compare intra-individual changes in PBMC gene expression

at the healthy baseline before the malaria season and after the

resolution of febrile malaria—both directly ex vivo and after re-

exposing PBMCs to P. falciparum parasites in vitro. An important

limitation of blood transcriptome analysis is that changes in

mRNA levels can be driven by de novo transcriptional regulation or

changes in the composition of PBMCs in peripheral blood [81].

Three lines of evidence indicate that the observed changes in

mRNA levels in this study are driven by de novo transcriptional

regulation. First, by flow cytometry we did not observe gross

changes in the composition of the study subjects’ PBMCs from

before to after malaria. This is consistent with the observation that

immune cells traffic out of the peripheral circulation during acute

malaria but then return to the peripheral circulation after the

infection has resolved [82]. Second, at the individual subject level

we found that genes encoding myeloid-expressed pro-

inflammatory mediators were downregulated after malaria relative

to baseline, irrespective of changes in the percentage of monocytes,

even as mRNA levels of other genes identified as myeloid-specific

[38] were unchanged or increased relative to baseline. And finally,

we observed that in vitro stimulation of fixed populations of cells

(PBMCs and isolated monocytes/macrophages) induces de novo

expression of immune-related genes.

In summary, this longitudinal study of Malian children shows

that febrile malaria induces exposure-dependent P. falciparum-

specific regulatory responses that limit pathogenic inflammation

and enhance anti-parasite effector responses upon P. falciparum re-

exposure. These findings offer mechanistic insights into several

long-standing clinical observations in malaria including the high

incidence of asymptomatic P. falciparum infection in endemic areas

[69], reduced fever with repeated experimental Plasmodium

infections in humans [83], the rapid acquisition of immunity to

severe malaria [50], the rapid loss of clinical immunity to febrile

malaria in the absence of ongoing P. falciparum exposure [6] and

Plasmodium-induced hetero-tolerance to endotoxin challenge [25].

Longitudinal studies of symptomatic and asymptomatic individuals

who are repeatedly exposed to P. falciparum will refine our

understanding of the mechanisms underlying the regulation and

dysregulation of Plasmodium-induced inflammation and may help

define the potential for interventions that safely prevent or mitigate

Plasmodium-induced immunopathology without compromising

control of parasite replication.

Materials and Methods

Ethics statement
The Ethics Committee of the Faculty of Medicine, Pharmacy,

and Dentistry at the University of Sciences, Techniques, and

Technologies of Bamako, and the Institutional Review Board of

the National Institute of Allergy and Infectious Diseases, National

Institutes of Health approved this study. Written informed consent

was obtained from the parents or guardians of participating

children.

Study subjects
Study subjects were enrolled in an observational cohort study

conducted in Kambila, Mali, a rural village of ,1500 inhabitants

where intense seasonal P. falciparum transmission occurs from July

through December. The cohort is an age-stratified random sample

of the entire village population. A detailed description of the study

site and design of the cohort study has been published elsewhere

[31]. The present study focused on children aged 5–13 years who

had PBMCs collected at their healthy baseline before the malaria

season, and 7 or 14 days after treatment of their first malaria

episode of the ensuing malaria season, as well as a subset of

children who also had PBMCs collected after the following six-

month dry season, a period of little to no P. falciparum transmission.

Individual demographic and clinical data are given in Table S1.

Febrile malaria episodes were detected prospectively by self-

referral to the study clinic, which was staffed by a physician

24 hours/day. Malaria episodes were treated with a standard 3-

day course of artemether/lumefantrine.

Detection of P. falciparum infection
Thick blood smears were stained with Giemsa and counted

against 300 leukocytes, and P. falciparum densities were recorded as

the number of asexual parasites/ml of whole blood based on an

average leukocyte count of 7500/ml. Each smear was evaluated

separately by at least two expert microscopists. P. falciparum was
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detected by PCR from dried blood spots preserved on 903 Protein

Saver filter paper (Whatman) as previously described [80].

Processing of PBMCs
Blood samples (8 ml) were drawn by venipuncture into sodium

citrate-containing cell preparation tubes (BD, Vacutainer CPT

Tubes) and transported 20 km to the laboratory where PBMCs

were isolated and frozen within three hours according to the

manufacturer’s instructions. PBMCs were frozen in fetal bovine

serum (FBS) (Gibco, Grand Island, NY) containing 7.5% dimethyl

sulfoxide (DMSO; Sigma-Aldrich, St. Louis, MO), kept at 280uC
for 24 hours, and then stored at 2196uC in liquid nitrogen. For

each individual, PBMCs from all time points were thawed and

assayed at the same time. The trypan blue dye exclusion assay

consistently demonstrated .80% viability of PBMCs after

thawing.

Microarray chip processing and data analysis
RNA extraction, cDNA amplification, synthesis and labeling

was performed as previously described [84]. Hybridization, fluidics

and scanning were performed according to standard Affymetrix

protocols. GeneChip Operating Software GCOS v1.4 was used to

convert the image files to cell intensity data (cel files). All cel files,

representing individual samples were normalized using the Robust

Multiarray Average (RMA) method from the affy package library

in the R project for Statistical Computing (R Core Team 2013).

Nine outlier chips were identified among the unstimulated samples

using quality control plots from Partek Genomics Suite software

(Partek, inc. St. Louis, Mo., v6.5 6.11.310) and principal

components analyses (PCA) computed using R. An empirical

Bayes moderated paired T-test was computed using the limma

package library in R to obtain false discovery rate (FDR) adjusted

p-values and fold changes. Probes were considered statistically

significant if their FDR-adjusted P values were ,0.05 and their

absolute fold change was .1.25. Heatmaps were generated with

the gplots package library in R. Log fold change ratios, p-values and

false discovery rates from the empirical Bayes T-tests were

imported into Ingenuity Pathways Analysis to examine enrichment

of pathways and functional groups.

Quantitative real-time PCR
Human yeast Sfi1 homolog spindle assembly associated gene

(Sfi1) was selected as a reference gene based on its low coefficient

of variation (CV) across DNA microarray analysis. Seven mRNAs

were analyzed by q-RT-PCR to validate DNA microarray

findings: chemokine (C-X-C motif) ligand 5 (CXCL5), interleu-

kin-1 beta (IL1B), interleukin-6 (IL6), interleukin-10 (IL10), toll-like

receptor 2 (TLR2), and transforming growth factor, beta 1

(TGFB1). All six probe and primer sets were designed using

Primer Express version 3.0 (ThermoFisher Scientific, Waltham,

MA) and are listed inTable S5. Seventeen out of 34 patients were

selected for q-RT-PCR validation. Four RNAs were analyzed

from each patient representing the two time points HB and d7 and

two experimental conditions (‘ex vivo unstimulated’ and ‘in vitro

stimulated with iRBC’). Template preparation and q-RT-PCR

analysis was performed as described previously [84].

Preparing P. falciparum-infected red blood cell lysate for
in vitro stimulation of PBMCs

3D7 P. falciparum parasites were maintained in fresh human

ORh+erythrocytes at 3% hematocrit in RPMI 1640 medium (KD

Medical) supplemented with 10% heat-inactivated ORh+ human

serum (Interstate Blood Bank, Memphis, Tennessee), 7.4%

Sodium Bicarbonate (GIBCO, Invitrogen) and 25 mg/ml of

gentamycin (GIBCO, invitrogen), at 37uC in the presence of a

gas mixture containing 5% O2, 5% CO2 and 90% N2. Parasite

cultures were shown to be free of mycoplasma and acholeplasma

using an ELISA-based Mycoplasma Detection Kit (Roche) which

contains polyclonal antibodies specific for M. arginini, M. hyorhinis,

A. laidlawii and M. orale. P. falciparum schizont iRBCs were isolated

in RPMI 1640 medium supplemented with 0.25% Albumax

(GIBCO, Invitrogen) and 7.4% Sodium Bicarbonate (GIBCO,

Invitrogen) using magnetic columns (LD MACS Separation

Columns, Miltenyi Biotec). Control preparations of uninfected

red blood cells (uRBC) from the same blood donor were obtained

and tested in all experiments. Lysates of P. falciparum-infected and

uninfected RBCs were obtained by three freeze-thaw cycles in

liquid nitrogen and 37uC water bath.

In vitro stimulation of PBMCs with P. falciparum-infected
red blood cell lysate

PBMCs were cultured in complete RPMI (RPMI 1640 plus

10% fetal calf serum, 1% penicillin/streptomycin, 2-mercaptoeth-

anol) in flat-bottom 96 well plates, at 37uC in a 5% CO2

atmosphere. 500,000 PBMCs were stimulated with lysate of

infected red blood cells (iRBCs) or uninfected RBCs (uRBCs) in a

ratio of 3 RBCs per PBMC for 18 h, with or without 1.25 mg/ml

Brefeldin A (BFA) (Sigma-Aldrich) for the last 15 h of stimulation.

A 3:1 ratio of RBC to PBMC was used on the basis of titration

experiments (from 5:1 to 1:1) and is consistent with previous

reports [85]. PBMCs stimulated with 1.18 mg/ml Staphylococcal

enterotoxin B from Staphylococcus aureus (SEB) (Sigma-Aldrich) was

used as a positive control for cytokine production in supernatants

and within cells. Following stimulation, cells were centrifuged and

supernatants were recovered and frozen at 280uC for cytokine

analysis. Cells stimulated in the presence of BFA were centrifuged,

washed and recovered for intracellular staining and flow cytometry

analysis.

Isolation of monocytes/macrophages and in vitro
stimulation with P. falciparum-infected red blood cell
lysate

Monocyte/macrophages were isolated from PBMCs of Malian

children by negative selection using the MACS Pan Monocyte

Cell Negative Isolation kit II (Miltenyi Biotec), an indirect

magnetic labeling system for the isolation of untouched mono-

cytes/macrophages. Non-monocyte/macrophage cells were di-

rectly depleted by using a cocktail of biotin-conjugated antibodies

followed by magnetic removal of labeled cells. Monocyte/

macrophage purity was verified by flow cytometry using fluores-

cently labeled antibodies specific for CD3 PE (UCHT1), CD4

APC (RPA-T4), CD8 APC-Cy7 (SK1), CD14 FITC (M5E), CD16

Pacific blue (3G8) (BD Biosciences), CD19 PerCP-Cy5.5 (SJ25C1)

(eBioscience), and 7-Aminoactinomycin D (7-AAD) viability

staining (BD Biosciences). FACS analysis was performed on a

BD LSR II Table flow cytometer (BD Bioscience) and analyzed

using FlowJo software (Tree Star). Purified monocytes/macro-

phages were then stimulated in a ratio of 30 RBCs per monocyte

for 6 h with lysate of P. falciparum-infected RBCs and cytokines

were measured in supernatants.

Flow cytometry
PBMCs were washed in PBS with 4% heat-inactivated FCS and

cells were incubated for 30 min at 4uC with fluorescently labeled

antibodies specific for CD3 PE (UCHT1), CD4 APC (RPA-T4),

CD8 APC-Cy7 (SK1), CD14 FITC (M5E) and CD16 Pacific blue
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(3G8) purchased from BD Biosciences; and CD19 PerCP-Cy5.5

(SJ25C1) purchased from eBioscience. All phenotypic analyses

were performed using mouse mAbs specific for human markers

conjugated to fluorophores. FACS analyses were performed on a

BD LSR II Table flow cytometer (BD Biosciences) and analyzed

using FlowJo software (Tree Star, Inc).

Measurement of cytokines in supernatants of stimulated
PBMCs

Supernatants were thawed and immediately analyzed with Bio-

plex human cytokine assays (Bio-Rad Laboratories, Inc.) as

recommended by the manufacturer. The following cytokines were

measured: IL-1b, IL-6, IL-8, IL-10 and TNF. Briefly, 25 mL of

supernatant was diluted 1:2 in medium and incubated with anti-

cytokine antibody-coupled magnetic beads for 30 min at room

temperature shaking at 300 RPM in the dark. Between each step

the complexes were washed three times in wash buffer, using a

vacuum manifold. The beads were then incubated with a

biotinylated detector antibody for 30 min before incubation with

streptavidin-phycoerythrin for 30 minutes. Finally, the complexes

were resuspended in 125 mL of detection buffer and 100 beads

were counted with a Luminex 200 device (Bio-Rad Laboratories,

Inc.). Final concentrations were calculated from the mean

fluorescence intensity and expressed in pg/mL using standard

curves with known concentrations of each cytokine.

IL-10 blocking
PBMCs were cultured in complete RPMI in flat-bottom 96 well

plates, at 37uC in a 5% CO2 atmosphere. 500,000 PBMCs were

stimulated for 18 h with lysate of infected (iRBCs) or uninfected

RBCs (uRBCs) in a ratio of 3 RBCs per PBMC in the presence of

anti-IL-10 (BD Pharmigen, USA) and anti-IL-10R (R&D Systems,

Inc.) or in the presence of the respective isotype controls.

Following stimulation cells were centrifuged and supernatants

were recovered for cytokine analysis.

Intracellular cytokine staining
After stimulation a total of 16106 PBMCs were sequentially

stained for surface and intracellular markers in round-bottom 96-

well plates at room temperature. To exclude dead cells, PBMCs

were stained for 30 min using the LIVE/DEAD Fixable Violet

Dead Cell Stain Kit (Invitrogen) followed by a surface staining

with PerCP-Cy5.5 anti-human CD27 (M-T271) and APC-H7

anti-human CD45RO (UCHL1) for 20 min. After fixing and

permeabilizing the cells according to the manufacturer’s protocol

using the FoxP3 Staining Buffer Set (eBioscience), the cells were

stained with BD Horizon V500 anti-human CD3 (UCHT1),

PerCP anti-human CD4 (SK3), Alexa Fluor 700 anti-human IFNc
(B27), FITC anti-human TNF (MAb11), APC anti-human IL-10

(JES3-19F1), PE-Cy7 anti-human CD25 (BC96) and PE anti-

human FoxP3 (236A/E7) for 30 min. Fluorescently labeled

antibodies against TNF, CD25 and FoxP3 were purchased from

eBioscience, the remaining antibodies were purchased form BD

Biosciences. Cells were acquired using a BD LSR II Table flow

cytometer (BD) and analyzed using FlowJo software (Tree Star)

and SPICE software [86].

Isolation of CD4+ T cells and in vitro stimulation with P.
falciparum infected red blood cell lysate

CD4+ T cells were isolated from PBMCs of Malian children by

negative selection using the MACS CD4+ T Cell Negative

Isolation kit II (Miltenyi Biotec), an indirect magnetic labeling

system for the isolation of untouched CD4+ T helper cells. Non-

CD4+ T cells were directly depleted by using a cocktail of biotin-

conjugated antibodies against CD8, CD14, CD16, CD19, CD36,

CD56, CD123, TCR g/d and Glycophorin A and anti-Biotin

microbeads, followed by magnetic removal of labeled cells. CD4+

T cells purity was verified by flow cytometry, using fluorescently

labeled antibodies specific for CD3 (PE) and CD4 (APC) (BD

Bioscience) and a BD LSR II Table flow cytometer (BD

Bioscience, USA) and analyzed using FlowJo software (Tree Star,

Inc). Purified CD4+ T cells were then incubated either in the

presence or absence of non-CD4+ cells and stimulated for 18 h

with lysate of infected (iRBCs) or uninfected RBCs (uRBCs), for

cytokine analysis of supernatants.

MHC II blocking
PBMCs were cultured in complete RPMI in flat-bottom 96 well

plates, at 37uC in a 5% CO2 atmosphere. 500,000 PBMCs were

stimulated for 18 h with lysate of infected (iRBCs) or uninfected

RBCs (uRBCs) in a ratio of 3 RBCs per PBMC, in the presence of

anti-human leukocyte antigen HLA-DQ (SPVL-3; Beckmann

Coulter, USA), anti-HLA-DP (B7/21; abcam, USA) and anti-

HLA-DR (L243; Biolegend, USA), or in the presence of respective

isotype controls. Following stimulation, cells were centrifuged and

supernatants were recovered for cytokine analysis.

Statistical analysis
Continuous data were compared using the paired or unpaired

Student’s T-test, paired Wilcoxon rank sum test or permutation

tests of mean paired differences as appropriate. Bonferroni

adjustments were applied to correct for multiple comparisons

when appropriate. A linear mixed model for repeated measures

ANOVA with Tukey HSD post hoc tests was also used to compare

continuous variables. Pearson correlation coefficients and linear

regressions with 95% confidence bands were used to examine the

correlation between continuous variables. Fisher’s exact test was

used for contingency table analyses. The statistical test used is

specified in the figure legends. Statistical significance was defined

as a 2-tailed P value of #.05. Statistical tests were computed using

R version 2.13.2 (http://www.R-project.org), GraphPad Prism

version 5.0d (http://www.graphpad.com/scientific-software/

prism/) or JMP 10.0 (www.jmp.com).

Supporting Information

Figure S1 (A) Principal components analysis of the microarray

data showed that transcription profiles of the unstimulated PBMCs

segregated on the basis of time-point (healthy baseline vs 7 days

after malaria), but not age, gender or batch effects. The samples of

the nine individuals that did not pass the microarray quality

assessment are indicated in gray. (B) Ingenuity Pathway Analysis

(IPA) summary showing canonical pathways that remained

affected after the resolution of febrile malaria relative to the

healthy pre-malaria baseline in the unstimulated PBMC micro-

array experiments. The graphs show the BH adjusted p values

(yellow line) of the enrichment of canonical pathways. The bars

indicate the percentage of genes in a given pathway that are

differentially expressed with the total number of genes in each

pathway shown on the right Y-axis. The red and green portions of

the bars indicate the percentage of genes within each pathway that

were upregulated or downregulated, respectively. (C) Ratio of

monocyte percentage (day 7 after malaria/healthy baseline) vs the

ratio of the expression level of monocyte-derived mediators of the

inflammatory response (day 7 after malaria/healthy baseline).

Each point represents an individual subject. (D) Heat map showing

RMA-normalized log2 ratios (day 7 after malaria/healthy
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baseline) of genes identified as myeloid-specific (Chaussabel et al.,

2008) (rows) in unstimulated PBMCs for each child (columns).

Statistically significant differentially expressed genes are indicated

with an asterisk (n = 50 paired samples). (E) IPA summary showing

canonical pathways that remained affected after the resolution of

febrile malaria relative to the healthy pre-malaria baseline in the P.

falciparum iRBC stimulated PBMC microarray experiments. The

graphical elements are as described in (B).

(TIF)

Figure S2 (A) Flow cytometry gating strategy to detect

monocyte/macrophage enrichment. FACS plots of PBMCs of a

representative Malian child. Within the total PBMC gate the

monocyte population is defined by live CD14+ before and after

monocyte/macrophage enrichment, shown in pink. (B) Percentage

of live monocyte/macrophages of total PBMCs before (PBMCs)

and after (M0) monocyte/macrophage enrichment in PBMCs

collected at healthy baseline (HB) and 14 days after the first

malaria episode of the season (d14) (n = 9, P,0.0001). P values

determined by ANOVA with Sidak’s multiple comparisons test.

(TIF)

Table S1 Demographic and clinical data of study subjects and

assays in which PBMC samples were used.

(PDF)

Table S2 Ex vivo differentially expressed genes from before to

after malaria. Transcripts are significant if FDR-adjusted p-

value,0.05 and absolute fold change .1.25. Transcript ID is the

Affymetrix accession number.

(PDF)

Table S3 Differentially expressed genes in response to in vitro P.

falciparum stimulation from before to after malaria. Transcripts are

significant if DR-adjusted p-value,0.05 and absolute fold change

.1.25. Transcript ID is the Affymetrix accession number.

(PDF)

Table S4 Microarray Expression and q-RT-PCR values of

selected genes from 18 individuals at healthy baseline and day 7

after the first malaria episode with and without P. falciparum in vitro

stimulation.

(PDF)

Table S5 Sequences of primers and probes used for q-RT-PCR

validation.

(PDF)
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